по дисциплине «История и философия науки»

направление 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы»

Дисциплина «История и философия науки» относится к базовой части блока Б1.Б.01, базовые дисциплины (модули) подготовки аспирантов по направлению подготовки 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы».

Дисциплина нацелена на формирование компетенций: УК-1,УК-2, УК-3, УК-5, ОПК-1, ОПК-2.

Целью освоения дисциплины является осмысление онтологических, методологических, гносеолого-эпистемологических, мировоззренческих и социальных проблем, возникающих в математике и механике на современном этапе их развития.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, реферат, самостоятельная работа аспиранта.

Тематический план дисциплины:

Раздел 1. История математики и механики

- 1. Математика, её предмет и место в историко-философском процессе развития науки.
- 2. Периодизация истории математики.
- 3. Зарождение и формирование математики как теоретической науки.
- 4. Научно-техническая революция и становление математики переменных величин (XVII-XIX вв.).
- 5. Современная математика XX в.
- 6. Математические знания, школы и сообщества в России и СССР.
- 7. Математизация современной науки и специфика применения математических методов в различных областях знания.
- 8. Механика, её предмет и место в историко-философском процессе развития науки.
- 9. Периодизация истории механики и методологические принципы изучения истории механики.
- 10. Зарождение механики и элементарный период ее развития.
- 11. Формирование основных понятий, законов и принципиальных основ механики (XVII-XIX вв.).
- 12. Современная механика (ХХ в.) и специализация механического знания.
- 13. Развитие механического знания в России.
- 14. Современные проблемы механики и взаимодействие механики с другими областями знания.

Раздел 2. Общие проблемы философии науки

- 1. Предмет и основные подходы к науке в современной философии науки.
- 2. Возникновение науки и основные стадии ее исторической эволюции.
- 3. Структура научного познания и знания.
- 4. Наука как динамическое социокогнитивное образование.
- 5. Научные традиции и научные революции. Исторические типы рациональности.
- 6. Наука в культуре современной цивилизации.
- 7. Наука как социокультурный институт.
- 8. Наука как социокультурный феномен.
- 9. Динамичность науки как условие рождения нового знания.

Раздел 3. Философские проблемы математики и механики.

- 1.Специфика математического знания в свете философской рефлексии.
- 2. Философские концепции математики.
- 3. Специфика физического знания в свете философской рефлексии.
- 4. Физика наука о фундаментальных свойствах физической реальности.
- 5. Математика и физика как формы и способы постижения человеком мира
- 6. Философская проблематика в практике математического и физического анализа

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

по дисциплине «Иностранный язык»

направление 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы».

Дисциплина «Иностранный язык» относится к базовой части блока Б1.Б.02 Дисциплины (модули) подготовки аспирантов по направлению подготовки 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы».

Дисциплина нацелена на формирование компетенции: УК-4.

Целью освоения дисциплины «Иностранный язык» является повышение исходного уровня владения иностранным языком, достигнутого на предыдущей ступени образования, и овладение аспирантами необходимым и достаточным уровнем коммуникативной компетенции для решения социально-коммуникативных задач в различных областях бытовой, культурной, профессиональной и научной деятельности при общении с зарубежными партнерами, а также для дальнейшего самообразования.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: практические занятия, самостоятельная работа аспиранта.

Тематический план дисциплины:

Фонетика. Интонационное оформление предложения: словесное, фразовое и логическое ударения, мелодия, паузация; фонологические противопоставления, релевантные для изучаемого языка: долгота (краткость), закрытость (открытость) гласных звуков, звонкость (глухость) конечных согласных и т. п. Порядок слов простого предложения. Сложное предложение: сложносочиненное и сложноподчиненное предложения. Союзы и относительные местоимения. Эллиптические предложения. Бессоюзные придаточные. Употребление личных форм глагола в активном залоге. Согласование времен. Пассивные конструкции: с агентивным дополнением, без агентивного дополнения; пассивная конструкция, в которой подлежащее соответствует русскому косвенному или предложному дополнению. Функции инфинитива: инфинитив в функции подлежащего, определения, обстоятельства; оборот "дополнение с инфинитивом" (объектный падеж с инфинитивом); оборот "подлежащее с инфинитивом" (именительный падеж с инфинитивом); инфинитив в функции вводного члена; инфинитив в составном именном сказуемом (be + инф.) и в составном модальном сказуемом; оборот "for + сущ. + инфинитив". Функции причастия: причастие в функции определения и определительные причастные обороты; независимый причастный оборот (абсолютная причастная конструкция); причастный оборот в функции вводного члена; оборот "дополнение с причастием" (оборот объектный падеж с причастием); предложения с причастием I или II, стоящим на первом месте в предложении и являющимся частью двучленного сказуемого have + существительное + причастие. Функции герундия: герундий в функции подлежащего, дополнения, определения, обстоятельства; герундиальные обороты. Сослагательное наклонение. Модальные глаголы. Модальные глаголы с простым и перфектным инфинитивом; функции глаголов should и would. Условные предложения. Атрибутивные комплексы (цепочки существительных). Эмфатические (в том числе инверсионные) конструкции: предложения с усилительным приглагольным do; инверсия на первое место отрицательного наречия, наречия неопределенного времени или слова only с инклюзией ритмического (непереводимого) do; оборот it is...that; инверсия с вводящим there; двойная инверсия двучленного сказуемого в форме Continious или пассива; инвертированное придаточное уступительное или причины; двойное отрицание. Многофункциональные строевые элементы: местоимения, слова-заместители (that (of), those (of), this, these, do, one, ones), сложные и парные союзы, сравнительно-сопоставительные обороты (as...as, not so...as, the...the). Коммуникативное (актуальное) членение предложения и средства его выражения.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов.

по дисциплине «Педагогика и психология высшей школы»

направление 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы».

Дисциплина «Педагогика и психология высшей школы» относится к вариативной части блока Б1 Дисциплины (модули) подготовки студентов по направлению подготовки 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы».

Дисциплина нацелена на формирование компетенций: УК-5, ОПК-2, ПК-2.

Целью освоения дисциплины «Педагогика и психология высшей школы» является усвоение аспирантами психолого-педагогических знаний и умений, необходимых как для профессиональной педагогической деятельности, так и для повышения общей компетентности в межличностных отношениях со студенческим и педагогическим коллективом.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, семинарские (практические) занятия, самостоятельная работа студента, курсовое проектирование.

Тематический план дисциплины:

Основы педагогики высшей школы. Дидактика и инноватика Современные дидактические теории и технологии обучения

Развитие высшего образования в России и за рубежом. Университеты: возникновение и развитие научного знания. Особенности педагогической деятельности в высшей школе. Дидактика или теория обучения в высшей школе. Основные принципы теории обучения в высшей школе. Программируемое обучение, проблемное, модульное обучение в высшей школе. Интерактивное обучение: принципы и формы. Цикл Колба в обучении взрослых.

Формы организации обучения в вузе: традиции и инновации

Содержание и методы обучения в высшей школе. Лекция в высшей школе: подготовка преподавателя. Практические и семинарские занятия в высшей школе, их цели, организация проведения. Лабораторные работы и методика их проведения. Учебная и производственная практика, ее организация. Курсовые работы и проекты, ВКР и дипломное проектирование.

Педагогический мониторинг и прогностика

Контроль знаний в высшей школе. Педагогические требования к его организации. Фонд оценочных знаний: формы, уровни и типы оценивания. Оценка интерактивных форм обучения. Модель оценки Блума (таксономия Блума). Модель Киркпатрика. Самостоятельная работа студентов. Бюджет времени студентов. Компетенции в основе системе оценивания.

Психология личности и ее развития в высшей школе

Личность как психологическая категория. Развитие личности.

Человек, личность, индивидуальность. Социальные роли и статусы. Типологии личности в педагогическом процессе. Социализация личности. Этапы социализации и их специфика. Особенности социализации детей и взрослых. Личность студента. Личность преподавателя. Профессионализация личности. Профессиональные деформации.

Психологические особенности студенческого возраста

Понятие возраста и психологического возраста. Периодизации возрастного развития личности в отечественной и зарубежной психологии. Специфика студенческого возраста: мотивы, новообразования, деятельность. Клиповое мышление: достоинства и ограничения. Теория поколений. Поколения X, Y, Z.

Теория и практика воспитания студентов в вузе

Сущность и приоритетные стратегии воспитания студентов

Основы воспитания в высшем учебном заведении, критерии и содержание понятия качества воспитания студентов. Структура и стратегии воспитательной работы в вузе. Воспитание духовно-нравственной, гражданской, экологической и эстетической культуры. Воспитание культуры поведения и общения студентов. Воспитание культуры учебно-исследовательской, научно-исследовательской и информационной деятельности.

Совершенствование условий и процесса воспитания

Развитие творческого мышления студентов в процессе обучения. Приемы формирования позитивных эмоций. Активизация механизмов мышления и поведения, основные приемы. Изменение роли преподавателя в воспитательном процессе в современных условиях, новые формы работы с преподавателями. Студенческое самоуправление и кураторство.

Психология педагогического общения и взаимодействия в группе

Психология педагогического общения и взаимодействия со студенческой группой

Педагогическое общение, его основные функции. Структура педагогического общения. Триада преподавательского общения: этос, логос и пафос. Стили педагогического общения. Педагогический такт. Лидеры и аутсайдеры в студенческой группе: специфика общения. Особенности общения в ситуации социальной инклюзии.

Психология общения и взаимодействия с коллегами в педагогическом коллективе

Психология общения: коммуникативная, интерактивная и перцептивная стороны общения. Профессиональная этика преподавателя: уровни общения. Правовой, нормативный и моральный уровень регулирования отношений. Сотрудничество и конфликтное взаимодействие. «Трудные» люди в общении. Профессиональный стресс и эмоциональное выгорание.

Общая трудоемкость освоения дисциплины составляет 2 зачетных единиц, 72 часа.

по дисциплине «Методология научных исследований»

направление 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы».

Дисциплина «Методология научных исследований» относится к вариативной части блока Б1 Дисциплины (модули) подготовки обучающихся по направлению подготовки 01.06.01 «Математика и механика» профиля «Механика жидкости, газа и плазмы».

Дисциплина нацелена на формирование компетенций: УК-2, ОПК-1, ПК-1.

Целью освоения дисциплины «Методология научных исследований» является формирование у аспирантов профессиональных компетенций, связанных с комплексным пониманием эволюции системы в связи с другими системами на макро и микроуровне, определением возможностей по дальнейшему развитию системы, составлению алгоритма решения научно-исследовательских задач с применением современных научных методологий, профессиональных знаний, информационно-коммуникационных технологий.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося, зачет.

Тематический план лисшиплины:

Теория решения изобретательских задач - Законы развития технических систем

Системный подход

Кривая развития системы

Матрица бостонской консультационной группы

Законы статики: полноты частей системы, "энергетической проводимости", согласования ритмики частей системы

Законы динамики: увеличения степени идеальности системы, неравномерности развития частей системы, перехода в надсистему

Законы кинематики: перехода с макроуровня на микроуровень, перехода к более управляемым ресурсам

Частные случаи законов: опережающего развития рабочего органа, увеличения степени динамичности систем, самосборки, повышения свернутости системы

Теория решения изобретательских задач – Уровни изобретательских задач

Главная полезная функция системы

Идеальный конечный результат

Типы противоречий: административное, техническое, физическое

- 1-й уровень изобретательских задач
- 2-й уровень изобретательских задач
- 3-й уровень изобретательских задач
- 4-й уровень изобретательских задач
- 5-й уровень изобретательских задач

Методология подготовки к защите диссертации

Этапы обучения в аспирантуре

Требования к тексту диссертации

Процедура подготовки к защите диссертации в диссертационном совете

Процедура защиты диссертации и подготовки аттестационного дела

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

по дисциплине «Планирование и управление научными проектами с применением современных информационно-коммуникационных технологий»

направление 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы».

Дисциплина «Планирование и управление научными проектами с применением современных ИКТ» относится к вариативной части блока Б1 Дисциплины (модули) подготовки обучающихся по направлению подготовки 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы».

Дисциплина нацелена на формирование компетенций: УК-3, УК-5, ПК-1.

Целью освоения дисциплины «Планирование и управление научными проектами с применением современных ИКТ» является формирование у аспирантов профессиональных компетенций, связанных с планированием и организацией собственной исследовательской работы и готовностью участвовать в научном коллективе в области профессиональной деятельности с применением современных информационно-компьютерных технологий.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося, зачет.

Тематический план дисциплины:

Формирование профиля ученого в электронной научной библиотеке Elibrary

Требования ВАК к количеству публикаций

Общее представление о РИНЦ

Регистрация автора в РИНЦ

Классификация ресурсов, загруженных в РИНЦ

Возможности поиска в РИНЦ

Использование заимствований в публикации

Проверка на плагиат

Виды цитирования

Поддержка исследований через научные фонды

Основные фонды поддержки исследований

Российский фонд фундаментальных исследований

Отделение гуманитарных и общественных наук РФФИ

Российский научный фонд

Фонд содействия инновациям

Совет по грантам президента РФ

Условия участия в ФЦП

ФЦП «Исследования и разработки по приоритетным направлениям развития научнотехнологического комплекса России»

Мегагранты

Развитие кооперации российских вузов и производственных предприятий

Выбор журналов и конференций для публикации научных результатов

Выбор журналов для публикации научных результатов

Выбор конференции для публикации научных результатов

Возможности международных баз научного цитирования

Международная база научного цитирования Web of Science

Международная база научного цитирования Scopus

Другие международные базы научного цитирования

Возможности научных социальных сетей

Научная социальная сеть ResearchGate

Научная социальная сеть Google Scholar

Научная социальная сеть Academia.edu

Библиотека открытого доступа КиберЛенинка

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа.

по дисциплине «Стилистика и культура речи»

направление 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы»

Дисциплина «Стилистика и культура речи» относится к базовой части блока Б1 Дисциплины (модули) подготовки по направлению подготовки 01.06.01 «Математика и механика», профиль «Механика жидкости, газа и плазмы».

Дисциплина нацелена на формирование компетенций: УК-4, ПК-2.

Целью освоения дисциплины «Стилистика и культура речи» является знание основных понятий и категории функциональной стилистики и культуры речи

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа аспиранта.

Тематический план дисциплины:

Современная теоретическая концепция предмета стилистики и культуры речи. Цель, предмет, задачи изучения дисциплины. Основные признаки культуры речи и этика речевого общения. Русский литературный язык и национальный русский язык. Теория нормы.

История развития риторического знания и культуры речи. Ломоносовский период исследования. Вклад М. М. Сперанского в развитие науки о языке. Труды ученых XIX в. и становление новой стилистической концепции литературного языка. 20 –70-ые годы XX столетия как этап становления ортологии русского языка.

Коммуникативный аспект культуры речи и функциональные разновидности языка.

Коммуникативные задачи языка и сферы общения. Принципы успешного общения и причины коммуникативных неудач. Стратегии, тактики и приемы общения. Функциональные разновидности языка.

Нормативный аспект культуры речи и функциональные разновидности языка. Нормализация литературного языка и его кодификация. Классификация ошибок по уровням литературного языка. Языковые варианты нормы. Устная и письменная формы литературного языка

Культура речи в преподавательской деятельности и стилистическое многообразие русского языка. Виды ораторской речи, академическое красноречие и речь преподавателя ВШ. Этика речевого общения преподавателя, этикетные формулы речи. Языковые средства и их стилевое расслоение. Стилистическая окраска словоупотребления. Экспрессивные стили речи.

Функционально-смысловые типы речи и культура полемики. Повествовательный тип речевой культуры. Описательный тип речевой культуры. Рассуждение как тип исследовательской речи. Культура речевой полемики и дискутивно-полемической речи.

Структура речи и текста. Композиция речей и композиция текстов. Способы построения научного текста и его архитектоника. Логическая организация материала. Аргументированность материала. Виды научных произведений. Подготовка рецензии / отзыва / аннотации на произведение из специализированной литературы.

Подготовка речи и выступление. Приемы изложение и объяснения содержания речи. Монолог и диалог в речи преподавателя. Контакт с аудиторией. Техника речи. Подготовка доклада по теме диссертации.

Культура научной и профессиональной речи. Языковые черты научной и профессиональной речи. Термин и терминологическая система языка. Стилевые и жанровые особенности научного стиля. Подготовка введения к диссертации.

Общая трудоемкость освоения дисциплины составляет 2 зачетные единицы, 72 ч.

по дисциплине «Механика жидкости, газа и плазмы»

направление 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы»

Дисциплина «Механика жидкости, газа и плазмы» относится к вариативной части блока Б1 Дисциплины (модули) подготовки аспирантов по направлению подготовки 01.06.01 «Математика и механика».

Дисциплина нацелена на формирование компетенций: УК-1, ОПК-1, ПК-1.

Целью освоения дисциплины Механика жидкости, газа и плазмы» является формирование у будущих выпускников теоретических знаний и практических навыков в области механики жидкости, газа и плазмы, механики твердого деформируемого тела, аэрогидроупругости, теории обыкновенных дифференциальных уравнений (ОДУ) и теории дифференциальных уравнений с частными производными (ДУЧП), теории устойчивости, понятий о динамических системах.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа аспиранта.

Тематический план дисциплины:

Дифференциальные уравнения

Общие свойства решений линейных дифференциальных систем. Метод Лагранжа вариации произвольных постоянных.

Общие теории об устойчивости линейных дифференциальных уравнений.

Устойчивость линейных однородных дифференциальных систем. Устойчивость линейной дифференциальной системы с постоянной матрицей.

Понятие о первом методе Ляпунова. Функции Ляпунова. Второй метод Ляпунова.

Классификация линейных ДУЧП второго порядка с двумя и тремя независимыми переменными.

Постановка начальных, граничных и смешанных задач для трех типов линейных уравнений.

Роль характеристик в постановке общей задачи Коши для гиперболического уравнения.

Метод Фурье.

Свойства гармонических функций. Функция Грина.

Теория потенциала для областей с границей типа Ляпунова.

Метод интегральных уравнений.

Краевые задачи теории поля (определение вектора поля по дивергенции и вихрю).

Специальные функции. Сферические и шаровые функции. Функция Бесселя. Колебания ограниченных объемов. Прямоугольная и круглая мембраны. Применение специальных функций в методе Фурье разделения переменных как методе фундаментальных функций.

Обобщенные функции и действия над ними. Существование и единственность обобщенного решения эллиптического уравнения.

Кинематика сплошной среды

Кинематика сплошной среды.

Общие уравнения движения сплошной среды.

Динамика идеального газа (жидкости)

Основные уравнения и теоремы динамики идеального газа (жидкости).

Одномерное течение идеального сжимаемого газа. Движение газа в трубе переменного сечения.

Ударные волны.

Безвихревое изэнтропическое (потенциальное) движение идеального сжимаемого газа. Потенциал скоростей. Интеграл Лагранжа-Коши.

Безвихревое движение идеальной несжимаемой жидкости. Интеграл Лагранжа-Коши.

Уравнение теплопроводности. Основные типы краевых условий в задачах теплопроводности. Примеры решения задач.

Динамика вязкого газа (жидкости)

Уравнение движения вязкого сжимаемого и несжимаемого газа (неразрывности, движения, энергии, состояния). Функция тока.

Точные решения уравнений движения вязкой жидкости. Слоистые течения вязкой несжимаемой жидкости. Течение вязкой несжимаемой жидкости в окрестности критической точки.

Ползущие движения вязкой несжимаемой жидкости.

Уравнение пограничного слоя. Расчет пограничного слоя на продольно обтекаемой пластине. Задачи об истечении струи из щели и из отверстия.

Турбулентное движение вязкой несжимаемой жидкости.

Отыскание точных частных решений трансзвукового уравнений и уравнения пограничного слоя.

Теория упругости и вязкоупругости

Уравнения колебаний упругой пластины (нелинейная и линейная теория).

Уравнения колебаний упругой цилиндрической оболочки (нелинейная и линейная теория).

Уравнения колебаний упругого стержня (нелинейная и линейная теория).

Основы расчета вязкоупругих тел. Уравнения динамики пластин, оболочек, стержней с учетом старения.

Задачи аэрогидроупругости

Задачи взаимодействия упругих пластин с жидкостью и газом.

Задачи взаимодействия упругих оболочек с жидкостью и газом.

Задачи взаимодействия упругих стержней с жидкостью и газом.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов.

по дисциплине «Методы ТФКП и Фурье решения задач аэрогидродинамики и аэрогидропругости. Устойчивость механических систем»

направление 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы»

Дисциплина «Методы ТФКП и Фурье решения задач аэрогидродинамики и аэрогидропругости. Устойчивость механических систем» относится к вариативной части блока Б1 Дисциплины (модули) подготовки аспирантов по направлению подготовки 01.06.01 «Математика и механика».

Дисциплина нацелена на формирование компетенций: ПК-1, ПК-2.

Целью освоения дисциплины «Методы ТФКП и Фурье решения задач аэрогидродинамики и аэрогидропругости. Устойчивость механических систем» является усвоение аспирантами теории конформных отображений, операционного метода и метода Фурье решения задач аэрогидродинамики и аэрогидроупругости, устойчивости механических систем.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа аспиранта.

Тематический план дисциплины:

Конформные отображения

Понятие конформного отображения. Основная задача. Соответствие границ.

Простейшие конформные отображения.

Принцип симметрии и отображение многоугольников.

Основные вариационные принципы конформных отображений. Отображения близких областей.

Безвихревое движение идеальной несжимаемой жидкости. Применение теории функций комплексного переменного для решения плоских задач обтекания).

Операционный метод и его приложения

Преобразование Лапласа. Свойства. Основные теоремы.

Приложения преобразования Лапласа к решению обыкновенных дифференциальных уравнений и систем.

Приложения преобразования Лапласа к решению уравнений с частными произволными

Приложения операционного метода в аэрогидродинамике и аэрогидроупругости.

Метод Фурье

Метод Фурье разделения переменных.

Метод Фурье представления искомых функций в виде рядов.

Решение аэрогидродинамической части некоторых задач аэрогидроупругости методом Фурье.

Устойчивость механических и динамических систем

Устойчивость движения механических систем по Ляпунову.

Исследование устойчивости динамических систем с помощью функционалов типа Ляпунова.

Устойчивость решений интегро-дифференциальных уравнений в частных производных, описывающих динамику колебаний пластин, оболочек и стержней.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единиц, 144 часа.

по дисциплине «Численные и асимптотические методы решения задач аэрогидродинамики и аэрогидроупругости»

направление 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы»

Дисциплина «Численные и асимптотические методы решения задач аэрогидродинамики и аэрогидроупругости» относится к вариативной части блока Б1 Дисциплины (модули) подготовки аспирантов по направлению подготовки 01.06.01 «Математика и механика».

Дисциплина нацелена на формирование компетенций: ПК-1, ПК-2.

Целью освоения дисциплины «Численные и асимптотические методы решения задач аэрогидродинамики и аэрогидроупругости» является усвоение аспирантами основных численных и асимптотических методов.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента.

Тематический план дисциплины:

Элементы функционального анализа

Метрические и нормированные пространства.

Линейные операторы.

Сопряженные пространства и операторы.

Вполне непрерывные операторы.

Абстрактные приближенные схемы

Абстрактные приближенные схемы.

Приближения на семействах банаховых пространств.

Аппроксимация, устойчивость и сходимость. Примеры для ОДУ и ДУЧП.

Сплайн - аппроксимация. Метод Галеркина.

Элементы теории ветвления решений нелинейных уравнений

Элементы теории ветвления решений нелинейных уравнений.

Теорема о неявных операторах в ее различных вариантах. Точки ветвления и точки бифуркации.

Метод Ляпунова-Шмидта. Решение задач аэрогидроупругости методом Ляпунова-Шмидта.

Задачи теории возмущений (возмущение линейного уравнения малым линейным слагаемым, ветвление собственных чисел и элементов фредгольмовых операторов).

Бифуркация Андронова-Хопфа в динамическом ветвлении.

Элементы теории ветвления решений нелинейных уравнений в условиях групповой симметрии.

Асимптотический анализ уравнений

Методы малого параметра, асимптотический анализ уравнений. Линейные и нелинейные разложения. Методы сращиваемых асимптотических разложений, многомасштабных разложений, деформированных координат.

Асимптотические уравнения движения идеального сжимаемого газа (для дозвуковых, сверхзвуковых, гиперзвуковых и трансзвуковых течений). Обтекание тонкого профиля сверхзвуковым потоком. Течение газа в соплах.

Методы взвешенных невязок решения краевых задач

Решение краевых задач методом Бубнова-Галеркина.

Решение краевых задач интегральным методом наименьших квадратов.

Основы вариационного исчисления. Метод Ритца решения краевых задач.

Численные методы исследования динамики и устойчивости механических и динамических систем

Устойчивость движения механических систем по Ляпунову.

Численное исследование устойчивости решений интегро-дифференциальных уравнений в частных производных, описывающих динамику колебаний пластин, оболочек и стержней, полученных на основе метода Бубнова-Галеркина.

Метод конечных разностей. Численное исследование устойчивости решений смешанных задач аэрогидроупругости методом конечных разностей.

Использование стандартных пакетов программ Matematica, MathCAD, Ansys для проведения численных экспериментов.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единиц, 144 часа.

практики по получению профессиональных умений и опыта профессиональной деятельности (педагогическая практика)

направление 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы»

Практика по получению профессиональных умений и опыта профессиональной деятельности (педагогическая практика) относится к вариативной части блока Б2 Практики подготовки аспирантов по направлению подготовки 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы».

Практика нацелена на формирование компетенций: ОПК-2, ПК-2.

Целью практики по получению профессиональных умений и опыта профессиональной деятельности (педагогическая практика) является изучение принципов педагогической деятельности, приобретение навыков преподавательской деятельности.

Основные вопросы, изучаемые в период прохождения практики.

- 1. Организационно-подготовительная работа (приобретение первичных профессиональных умений и опыта профессиональной деятельности).
- 1.1. Собеседование с руководителем практики, планирование и выбор видов работы.
- 1.2. Изучение нормативных документов системы высшего образования и локальных нормативных документов.
- 1.3. Посещение занятий научного руководителя (руководителя практики), ведущих преподавателе профильной кафедры.
- 2.Учебная, учебно-методическая и организационно-методическая работа (приобретение профессиональных умений и опыта профессиональной деятельности).
- 2.1. Подготовка к лекциям, практическим занятиям.
- 2.2. Участие в подготовке заданий для практических занятий, подготовка презентационных материалов для занятий, в том числе на основе результатов проведенных теоретических и эмпирических исследований.
- 2.3. Участие в подготовке методических материалов, учебных пособий и учебников, в составлении рабочих программ курсов.
- 2.4. Проведение практических занятий, ассистирование в проведении лекций, консультаций перед экзаменом, в приёме зачета, дифференцированного зачета, экзамена.
- 2.5. Участие в профориентационной работе профильной кафедры, помощь кураторам учебных групп.
- 3. Работа по подготовке отчета по результатам практики.
- 3.1. Подготовка отчета о педагогической практике.
- 3.2. Защита отчета о педагогической практике.

Общая трудоемкость освоения практики составляет 6 зачетных единиц, 216 часа, 4 недели.

практики по получению профессиональных умений и опыта профессиональной деятельности (научно-исследовательская практика)

направление 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы»

Практика по получению профессиональных умений и опыта профессиональной деятельности (научно-исследовательская практика) относится к вариативной части блока Б2 Практики подготовки аспирантов по направлению подготовки 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы».

Практика нацелена на формирование компетенций: ОПК-1, ПК-1.

Целью практики по получению профессиональных умений и опыта профессиональной деятельности (научно-исследовательская практика) является изучение основ научно-исследовательской деятельности, приобретение навыков научно-исследовательской деятельности.

Основные вопросы, изучаемые в период прохождения практики

1. Подготовительный этап.

- 1.1. Ознакомление аспиранта с целями и задачами практики, изучение отчетной документации, ознакомление со сроками прохождения практики и представления отчетной документации.
- 1.2. Собеседование с руководителем практики для выполнения самостоятельного научного исследования по актуальной научной проблеме с учетом тенденций развития науки и темы научно-квалификационной работы (диссертации).
- 1.3. Изучение методов организации и осуществления научно-исследовательской деятельности в соответствующей профессиональной области, нормативно-правовых актов, регламентирующих проведение научных исследований и представление их результатов.

Основной этап.

- 2.1. Изучение и анализ информационных ресурсов Министерства образования и науки Российской Федерации, Российского фонда фундаментальных исследований и других российских (международных) организаций.
- 2.2. Сбора и анализ информации о конкурсах российских (международных) научных фондов, компаний, государственных и иных организаций.
- 2.3. Изучение требований к оформлению конкурсной документации, систематизация и представление полученных результатов научного исследования по теме научноквалификационной работы (диссертации) в соответствии с конкурсными требованиями.
- 2.4. Подготовка и согласование конкурсной документации (проекта конкурсной документации, если конкурс не был объявлен в сроки проведения практики) при участии руководителя практики и консультанта (при наличии).

3. Заключительный этап.

- 3.1. Представление подготовленной конкурсной документации (проекта конкурсной документации, если конкурс не был объявлен в сроки проведения практики) для оценки руководителем и консультантом (при наличии), получение заключения руководителя и отзыва консультанта (при наличии).
- 3.2. Оформление отчета по результатам практики, представление и защита отчета по результатам практики на кафедре.

Общая трудоемкость освоения практики составляет 6 зачетных единиц, 216 часа, 4 недели.

научно-исследовательской деятельности и подготовки научно-квалификационной работы (диссертации) на соискание ученой степени кандидата наук направление 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы»

Научно-исследовательская деятельность и подготовка научно-квалификационной работы (диссертации) на соискание ученой степени кандидата наук относится к вариативной части блок БЗ Научные исследования подготовки аспирантов по направлению подготовки 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы».

Научно-исследовательская деятельность и подготовка научно-квалификационной работы (диссертации) на соискание ученой степени кандидата наук нацелена на формирование компетенций: ОПК-1, ПК-1.

Целью научно-исследовательской деятельности и подготовки научно-квалификационной работы (диссертации) на соискание ученой степени кандидата наук является расширение, углубление и закрепление профессиональных знаний, полученных в учебном процессе, проведение научных исследований в соответствии с направленностью (профилем) программы и подготовка научно-квалификационной работы (диссертации) на соискание ученой степени кандидата наук.

Основные разделы (виды работы) в период научно-исследовательской деятельности и подготовки научно-квалификационной работы (диссертации) на соискание ученой степени кандидата наук

- 1. Научно-исследовательская деятельность.
- 1.1. Выбор темы научного исследования, обоснование ее актуальности, формулировка целей и задач исследования, выбор объекта и предмета исследования, методов исследования. Составление и утверждение индивидуального плана работы.
- 1.2. Работа по выполнению практической части научного исследования.
- 1.3. Работа по выполнению теоретической части научного исследования.
- 1.4. Подготовка результатов научного исследования к представлению в устной и письменной формах.
- 1.5. Подготовка результатов научного исследования для получения документов на объекты интеллектуальной собственности.
- 1.6. Участие в работе исследовательских коллективов по теме научного исследования.
- 2. Подготовка научно-квалификационной работы (диссертации) на соискание ученой степени кандидата наук.
- 2.1. Изучение актуальных проблем и тенденций развития механики жидкости, газа и плазмы, возможностей использования математического инструментария при проведении научного исследования, анализ отечественной и зарубежной научной литературы по теме научного исследования.
- 2.2. Выбор и утверждение темы научно-квалификационной работы (диссертации) для проведения самостоятельной научно-исследовательской деятельности в соответствии с направленностью (профилем) программы.
- 2.3. Систематизация результатов практической и теоретической частей научного исследования и подготовка рукописи научно-квалификационной работы (диссертации) на соискание ученой степени кандидата наук.
- 2.4. Подготовка и публикация по результатам научно-исследовательской деятельности работ в ведущих отечественных и (или) зарубежных рецензируемых научных журналах и изданиях.
- 2.5. Апробация результатов научно-исследовательской деятельности на национальных и международных конференциях.
- 2.6. Подготовка проекта автореферата научно-квалификационной работы (диссертации) на соискание ученой степени кандидата наук.

Общая трудоемкость освоения научно-исследовательской деятельности и подготовки научно-квалификационной работы (диссертации) на соискание ученой степени кандидата наук составляет 189 зачетных единиц, _6804 часа.

по дисциплине «Теория решения изобретательских задач»

направление 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы».

Дисциплина «Теория решения изобретательских задач» относится к вариативной части блока ФТД.В Факультативы подготовки обучающихся по направлению подготовки 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы».

Дисциплина нацелена на формирование компетенций: УК-5, ПК-1.

Целью освоения дисциплины «Теория решения изобретательских задач» является формирование у аспирантов профессиональных компетенций, связанных с комплексным пониманием эволюции системы в связи с другими системами на макро и микроуровне, определением возможностей по дальнейшему развитию системы, составлению алгоритма решения научно-исследовательских задач с применением современных научных методологий, профессиональных знаний, информационно-коммуникационных технологий.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося, зачет.

Тематический план дисциплины:

Теория развития творческой личности

Структура жизненной стратегии творческой личности

Критерии достойной цели

Схема идеальной творческой стратегии

«Дебют». Главный конфликт этапа. Обстоятельства и ходы

«Миттельшпиль». Главный конфликт этапа. Обстоятельства и ходы

«Эндшпиль». Главный конфликт этапа. Обстоятельства и ходы

«Постэндшпиль». Главный конфликт этапа. Обстоятельства и ходы

Приемы разрешения технических противоречий

Отраслевой и межотраслевой опыт. Понятие передовой области техники

Опыт изобретателей и его использование

Бионика. Поиск аналогий и их накопление в обобщенной форме

Типовые приемы разрешения противоречий – разрешение противоречий во времени

Типовые приемы разрешения противоречий – разрешение противоречий в пространстве

Типовые приемы разрешения противоречий – разрешение противоречий за счет изменения структуры внутри системы

Типовые приемы разрешения противоречий – разрешение противоречий за счет использования возможностей надсистемы

Общая трудоемкость освоения дисциплины составляет 1 зачетную единицу, 36 часов.

по дисциплине «Инновационная деятельность вуза»

направление 01.06.01 «Математика и механика» профиль «Механика жидкости, газа и плазмы».

Дисциплина «Инновационная деятельность вуза» относится к к вариативной части блока ФТД.В Факультативы подготовки обучающихся по направлению подготовки 01.06.01 «Математика и механика профиль «Механика жидкости, газа и плазмы».

Дисциплина нацелена на формирование компетенций: УК-5, ПК-1.

Целью освоения дисциплины «Инновационная деятельность вуза» является формирование у аспирантов профессиональных компетенций, связанных со способностью планировать и решать задачи собственного профессионального и личностного развития, способностью самостоятельно проводить научные исследования и получать научные результаты в профессиональной деятельности.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося, зачет.

Тематический план дисциплины:

Организация инновационной деятельности вуза

Жизненный цикл инновации

Задачи и направления формирования инновационной инфраструктуры вуза

Особенности деятельности малых инновационных предприятий

Организация инновационной деятельности аспирантов, молодых ученых

Анализ инвестиционной привлекательности региона

Особенности инновационной деятельности в университетах США

Особенности законодательства США в области трансфера технологий и его влияние на управление интеллектуальной собственностью в университетах

Взаимодействие и совместная работа компании Google Inc. с университетами и промышленным сектором

Опыт поддержки стартапов компаний в бизнес-инкубаторе Plug & Play Tech Center Поддержка инноваций студентов, аспирантов, молодых ученых в университетах США

Общая трудоемкость освоения дисциплины составляет 1 зачетную единицу, 36 часов.