по дисциплине «История и философия науки»

по направлению подготовки аспирантов 04.06.01 «Химические науки» профиль «Экология (химия)».

Дисциплина «История и философия науки» относится к базовой части блока Б1.Б01 Дисциплины (модули) подготовки аспирантов по направлению подготовки аспирантов 04.06.01 «Химические науки» профиль «Экология (химия)».

Дисциплина нацелена на формирование компетенций: УК-1, УК-2, УК-3, УК-5, ОПК-1, ОПК-2, ОПК-3

Целью освоения дисциплины «История и философия науки» является осмысление онтологических, методологических, гносеолого-эпистемологических, мировоззренческих и социальных проблем, возникающих в экологии на современном этапе её развития.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, реферат, самостоятельная работа аспиранта.

Тематический план дисциплины:

Раздел 1. История экологии

- 1. Предмет экологии как научной дисциплины.
- 1.1. Экология как наука, её место в системе научных дисциплин.
- 1.2. Предмет экологии и его специфика.
- 1.3. Основные понятия и принципы экологической науки.
- 2. История становления экологии.
- 2.1. Основные этапы становления и развития экологии (общий обзор).
- 2.2. Экология в Античности и в Новое время.
- 2.3. Экология в XIX века.
- 2.4. Экология XX века: общий обзор.
- 3. Экология XX века: развитие популяционного подхода.
- 3.1. Возникновение популяционного подхода. Логистическая и математическая модель популяционного роста.
 - 3.2. Принцип конкурентного исключения Г. Гаузе.
 - 3.3. «Индивидуалистическая концепция» Г.А. Глисона.
 - 4. Экология XX века: развитие экосистемных исследований.
 - 4.1. Истоки экосистемного подхода: гидроэкология, лимнология.
 - 4.2. Формирование принципов и направлений экосистемных исследований.
 - 4.3. Исследование биосферы.
 - 5. Развитие экологии в последние десятилетия XX века.
 - 5.1. Становление экологии как самостоятельной науки.
 - 5.2. Современная классическая экология: направления и методы исследования.
- 5.3. Современное состояние экологии: перспективы развития и роль в научной и социальной практике.

Раздел 2. Общие проблемы философии науки

- 1. Предмет и основные подходы к науке в современной философии науки.
- 1.1. Современная философия науки как область исследования и способ осмысления науки.
- 1.2. Логико-эпистемологический подход к исследованию науки: наука как система знаний.

- 1.3. Культурологический подход к исследованию науки: наука как особая сфера культуры.
 - 1.4. Социологический подход к исследованию науки: наука как социальный институт.
- 1.5. Деятельностный подход к исследованию науки: наука как вид духовного производства.
 - 1.6. Креатологический подход: наука как вид творчества.
 - 2. Возникновение науки и основные стадии ее исторической эволюции.
 - 2.1. Преднаука и наука как две стратегии порождения знаний.
 - 2.2. Античная наука как социокультурное явление.
 - 2.3. Средневековая ученость в горизонте христианской культуры.
 - 2.4. Наука в культуре Нового времени: сущностные черты.
 - 3. Структура научного познания и знания.
 - 3.1. Природа структурированности знания и его спецификация в научном познании.
 - 3.2. Многообразие когнитивных образований в науке и их организация.
- 3.3. Основания науки: онтологические схемы, идеалы и нормы научного исследования. Научная картина мира и ее функции в научном познании.
- 3.4. Место и роль философских идей и принципов в динамической структуре знания и институционализации научных знаний
 - 4. Наука как динамическое социокогнитивное образование.
- 4. Интернализм и экстернализм две трактовки механизмов научной деятельности и ее молелей.
 - 4.2. Креатологический подход к пониманию природы и динамики научного знания
 - 4.3. Механизмы порождения нового в науке.
 - 5. Научные традиции и научные революции. Исторические типы рациональности.
 - 5.1. Традиции и новации в научном познании. Виды традиций в науке.
- 5.2. Научные революции как формы развития науки. Модели научных революций (Т. Кун, И. Лакатос, В.С. Степин).
- 5.3. Научная революция как смена оснований науки. Основные формы и пути осуществления научных революций.
- 5.4. Глобальные научные революции как смена типов научной рациональности. Основные характеристики классического, неклассического, постнеклассического типов рациональности.
 - 6. Наука в культуре современной цивилизации.
- 6.1. Статус научной рациональности в структуре ценностей техногенной цивилизации.
- 6.2. Основные направления взаимодействия науки и философии, науки и искусства, науки и религии в современном обществе.
- 6.3. Статус глобального эволюционизма в системе методологических установок постнеклассической науки.
 - 7. Наука как социокультурный институт.
 - 7.1. Наука как социальный институт: от Нового времени к современному состоянию.
 - 7.2.Статус научных школ в развитии науки.
 - 7.3. Этические проблемы науки конца XX начала XXI веков.
 - 8. Наука как социокультурный феномен.
 - 9. Динамичность науки как условие рождения нового знания.

Раздел 3. Философские проблемы экологии.

- 1. Предмет экофилософии.
- 1.1. Экофилософия как область философского знания.
- 1.2. Понятие и структура геобиосоциосистемы.
- 1.3. Становление экологии в виде интегральной научной дисциплины.
- 2. Основные концепции экофилософии.
- 2.1. Генезис экологической проблематики.
- 2.2. Концепции и идеи экофилософии.
- 2.3. Экология культуры как отдельное направление экофилософии.

- 3. Новые экологические акценты XX века (2 часа).
- 3.1. Урбоэкология, лимиты роста, устойчивое развитие.
- 3.2. Социальная экология: предмет, задачи, структура.
- 3.3. Специфика социально-экологических законов общественного развития.
- 4. Глобализация как естественно-исторический процесс.
- 4.1. Феномен глобализации: истоки и последствия.
- 4.2. Этапы глобализации.
- 4.3. Концепция К. Лоренца.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

по дисциплине «Иностранный язык»

направление 04.06.01 «Химические науки» профиль «Экология (химия)».

Дисциплина «Иностранный язык» относится к базовой части блока Б1.Б.02 Дисциплины (модули) подготовки аспирантов по направлению подготовки 04.06.01 «Химические науки» профиль «Экология (химия)».

Дисциплина нацелена на формирование компетенции: УК-4.

Целью освоения дисциплины «Иностранный язык» является повышение исходного уровня владения иностранным языком, достигнутого на предыдущей ступени образования, и овладение аспирантами необходимым и достаточным уровнем коммуникативной компетенции для решения социально-коммуникативных задач в различных областях бытовой, культурной, профессиональной и научной деятельности при общении с зарубежными партнерами, а также для дальнейшего самообразования.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: практические занятия, самостоятельная работа аспиранта.

Тематический план дисциплины:

Фонетика. Интонационное оформление предложения: словесное, фразовое и логическое ударения, мелодия, паузация; фонологические противопоставления, релевантные для изучаемого языка: долгота (краткость), закрытость (открытость) гласных звуков, звонкость (глухость) конечных согласных и т. п. Порядок слов простого предложения. Сложное предложение: сложносочиненное и сложноподчиненное предложения. Союзы и относительные местоимения. Эллиптические предложения. Бессоюзные придаточные. Употребление личных форм глагола в активном залоге. Согласование времен. Пассивные конструкции: с агентивным дополнением, без агентивного дополнения; пассивная конструкция, в которой подлежащее соответствует русскому косвенному или предложному дополнению. Функции инфинитива: инфинитив в функции подлежащего, определения, обстоятельства; оборот "дополнение с инфинитивом" (объектный падеж с инфинитивом); оборот "подлежащее с инфинитивом" (именительный падеж с инфинитивом); инфинитив в функции вводного члена; инфинитив в составном именном сказуемом (be + инф.) и в составном модальном сказуемом; оборот "for + сущ. + инфинитив". Функции причастия: причастие в функции определения и определительные причастные обороты; независимый причастный оборот (абсолютная причастная конструкция); причастный оборот в функции вводного члена; оборот "дополнение с причастием" (оборот объектный падеж с причастием); предложения с причастием І или II, стоящим на первом месте в предложении и являющимся частью двучленного сказуемого have + существительное + причастие. Функции герундия: герундий в функции подлежащего, дополнения, определения, обстоятельства; герундиальные обороты. Сослагательное наклонение. Модальные глаголы. Модальные глаголы с простым и перфектным инфинитивом; функции глаголов should и would. Условные предложения. Атрибутивные комплексы (цепочки существительных). Эмфатические (в том числе инверсионные) конструкции: предложения с усилительным приглагольным do; инверсия на первое место отрицательного наречия, наречия неопределенного времени или слова only с инклюзией ритмического (непереводимого) do; оборот it is...that; инверсия с вводящим there; двойная инверсия двучленного сказуемого в форме Continious или пассива; инвертированное придаточное уступительное или причины; двойное отрицание. Многофункциональные строевые элементы: местоимения, словазаместители (that (of), those (of), this, these, do, one, ones), сложные и парные союзы, сравнительно-сопоставительные обороты (as...as, not so...as, the...the). Коммуникативное (актуальное) членение предложения и средства его выражения.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов.

по дисциплине «Педагогика и психология высшей школы»

направление 04.06.01 «Химические науки» профиль «Экология (химия)».

Дисциплина «Педагогика и психология высшей школы» относится к вариативной части блока Б1 Дисциплины (модули) подготовки студентов по направлению подготовки 04.06.01 «Химические науки» профиль «Экология (химия)».

Дисциплина нацелена на формирование компетенций: УК-5, ОПК-3, ПК-2.

Целью освоения дисциплины «Педагогика и психология высшей школы» является усвоение аспирантами психолого-педагогических знаний и умений, необходимых как для профессиональной педагогической деятельности, так и для повышения общей компетентности в межличностных отношениях со студенческим и педагогическом коллективом.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, семинарские (практические) занятия, самостоятельная работа студента, курсовое проектирование.

Тематический план дисциплины:

Основы педагогики высшей школы. Дидактика и инноватика Современные дидактические теории и технологии обучения

Развитие высшего образования в России и за рубежом. Университеты: возникновение и развитие научного знания. Особенности педагогической деятельности в высшей школе. Дидактика или теория обучения в высшей школе. Основные принципы теории обучения в высшей школе. Программируемое обучение, проблемное, модульное обучение в высшей школе. Интерактивное обучение: принципы и формы. Цикл Колба в обучении взрослых.

Формы организации обучения в вузе: традиции и инновации

Содержание и методы обучения в высшей школе. Лекция в высшей школе: подготовка преподавателя. Практические и семинарские занятия в высшей школе, их цели, организация проведения. Лабораторные работы и методика их проведения. Учебная и производственная практика, ее организация. Курсовые работы и проекты, ВКР и дипломное проектирование.

Педагогический мониторинг и прогностика

Контроль знаний в высшей школе. Педагогические требования к его организации. Фонд оценочных знаний: формы, уровни и типы оценивания. Оценка интерактивных форм обучения. Модель оценки Блума (таксономия Блума). Модель Киркпатрика. Самостоятельная работа студентов. Бюджет времени студентов. Компетенции в основе системе оценивания.

Психология личности и ее развития в высшей школе

Личность как психологическая категория. Развитие личности.

Человек, личность, индивидуальность. Социальные роли и статусы. Типологии личности в педагогическом процессе. Социализация личности. Этапы социализации и их специфика. Особенности социализации детей и взрослых. Личность студента. Личность преподавателя. Профессионализация личности. Профессиональные деформации.

Психологические особенности студенческого возраста

Понятие возраста и психологического возраста. Периодизации возрастного развития личности в отечественной и зарубежной психологии. Специфика студенческого возраста: мотивы, новообразования, деятельность. Клиповое мышление: достоинства и ограничения. Теория поколений. Поколения X, Y, Z.

Теория и практика воспитания студентов в вузе

Сущность и приоритетные стратегии воспитания студентов

Основы воспитания в высшем учебном заведении, критерии и содержание понятия качества воспитания студентов. Структура и стратегии воспитательной работы в вузе. Воспитание духовнонравственной, гражданской, экологической и эстетической культуры. Воспитание культуры поведения и общения студентов. Воспитание культуры учебно-исследовательской, научно-

исследовательской и информационной деятельности.

Совершенствование условий и процесса воспитания

Развитие творческого мышления студентов в процессе обучения. Приемы формирования позитивных эмоций. Активизация механизмов мышления и поведения, основные приемы. Изменение роли преподавателя в воспитательном процессе в современных условиях, новые формы работы с преподавателями. Студенческое самоуправление и кураторство.

Психология педагогического общения и взаимодействия в группе

Психология педагогического общения и взаимодействия со студенческой группой

Педагогическое общение, его основные функции. Структура педагогического общения. Триада преподавательского общения: этос, логос и пафос. Стили педагогического общения. Педагогический такт. Лидеры и аутсайдеры в студенческой группе: специфика общения. Особенности общения в ситуации социальной инклюзии.

Психология общения и взаимодействия с коллегами в педагогическом коллективе

Психология общения: коммуникативная, интерактивная и перцептивная стороны общения. Профессиональная этика преподавателя: уровни общения. Правовой, нормативный и моральный уровень регулирования отношений. Сотрудничество и конфликтное взаимодействие. «Трудные» люди в общении. Профессиональный стресс и эмоциональное выгорание.

Общая трудоемкость освоения дисциплины составляет 2 зачетных единиц, 72 часа.

по дисциплине «Методология научных исследований»

направление 04.06.01 «Химические науки» профиль «Экология (химия)».

Дисциплина «Методология научных исследований» относится к вариативной части блока Б1 Дисциплины (модули) подготовки обучающихся по направлению подготовки 04.06.01 «Химические науки» профиля «Экология (химия)».

Дисциплина нацелена на формирование компетенций: УК-2, ОПК-1, ПК-1.

Целью освоения дисциплины «Методология научных исследований» является формирование у аспирантов профессиональных компетенций, связанных с комплексным пониманием эволюции системы в связи с другими системами на макро и микроуровне, определением возможностей по дальнейшему развитию системы, составлению алгоритма решения научно-исследовательских задач с применением современных научных методологий, профессиональных знаний, информационно-коммуникационных технологий.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося, зачет.

Тематический план дисциплины:

Законы развития технических систем

Системный подход

Кривая развития системы

Матрица бостонской консультационной группы

Законы статики: полноты частей системы, "энергетической проводимости", согласования ритмики частей системы

Законы динамики: увеличения степени идеальности системы, неравномерности развития частей системы, перехода в надсистему

Законы кинематики: перехода с макроуровня на микроуровень, перехода к более управляемым ресурсам

Частные случаи законов: опережающего развития рабочего органа, увеличения степени динамичности систем, самосборки, повышения свернутости системы

Уровни изобретательских задач

Главная полезная функция системы

Идеальный конечный результат

Типы противоречий: административное, техническое, физическое

- 1-й уровень изобретательских задач
- 2-й уровень изобретательских задач
- 3-й уровень изобретательских задач
- 4-й уровень изобретательских задач
- 5-й уровень изобретательских задач

Методология подготовки к защите диссертации

Этапы обучения в аспирантуре

Требования к тексту диссертации

Процедура подготовки к защите диссертации в диссертационном совете

Процедура защиты диссертации и подготовки аттестационного дела

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

по дисциплине «Планирование и управление научными проектами с применением современных информационно-коммуникационных технологий»

направление 04.06.01 «Химические науки» профиль «Экология (химия)».

Дисциплина «Планирование и управление научными проектами с применением современных информационно-коммуникационных технологий» относится к вариативной части блока Б1 Дисциплины (модули) подготовки обучающихся по направлению подготовки 04.06.01 «Химические науки» профиль «Экология (химия)».

Дисциплина нацелена на формирование компетенций: УК-1, УК-3, УК-5, ОПК-2, ПК-1.

Целью освоения дисциплины «Планирование и управление научными проектами с применением современных информационно-коммуникационных технологий» является формирование у аспирантов профессиональных компетенций, связанных с планированием и организацией собственной исследовательской работы и готовностью участвовать в научном коллективе в области профессиональной деятельности с применением современных информационно-компьютерных технологий.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося.

Тематический план дисциплины:

Формирование профиля ученого в электронной научной библиотеке Elibrary

Требования ВАК к количеству публикаций

Общее представление о РИНЦ

Регистрация автора в РИНЦ

Классификация ресурсов, загруженных в РИНЦ

Возможности поиска в РИНЦ

Использование заимствований в публикации

Проверка на плагиат

Виды цитирования

Поддержка исследований через научные фонды

Основные фонды поддержки исследований

Российский фонд фундаментальных исследований

Отделение гуманитарных и общественных наук РФФИ

Российский научный фонд

Фонд содействия инновациям

Совет по грантам президента РФ

Условия участия в ФЦП

ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России»

Мегагранты

Развитие кооперации российских вузов и производственных предприятий

Выбор журналов и конференций для публикации научных результатов

Выбор журналов для публикации научных результатов

Выбор конференции для публикации научных результатов

Возможности международных баз научного цитирования

Международная база научного цитирования Web of Science

Международная база научного цитирования Scopus

Другие международные базы научного цитирования

Возможности научных социальных сетей

Научная социальная сеть ResearchGate

Научная социальная сеть Google Scholar Научная социальная сеть Academia.edu Библиотека открытого доступа КиберЛенинка Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

по дисциплине «Стилистика и культура речи» направление 04.06.01 «Химические науки»

профиль «Экология (химия)»

Дисциплина «Стилистика и культура речи» относится к базовой части блока Б1 Дисциплины (модули) подготовки по направлению подготовки 04.06.01 «Химические науки», профиль «Экология (химия)».

Дисциплина нацелена на формирование компетенций: УК-4, ПК-2.

Целью освоения дисциплины «Стилистика и культура речи» является знание основных понятий и категории функциональной стилистики и культуры речи

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа аспиранта.

Тематический план дисциплины:

Современная теоретическая концепция предмета стилистики и культуры речи. Цель, предмет, задачи изучения дисциплины. Основные признаки культуры речи и этика речевого общения. Русский литературный язык и национальный русский язык. Теория нормы.

История развития риторического знания и культуры речи. Ломоносовский период исследования. Вклад М. М. Сперанского в развитие науки о языке. Труды ученых XIX в. и становление новой стилистической концепции литературного языка. 20 –70-ые годы XX столетия как этап становления ортологии русского языка.

Коммуникативный аспект культуры речи и функциональные разновидности языка.

Коммуникативные задачи языка и сферы общения. Принципы успешного общения и причины коммуникативных неудач. Стратегии, тактики и приемы общения. Функциональные разновидности языка.

Нормативный аспект культуры речи и функциональные разновидности языка. Нормализация литературного языка и его кодификация. Классификация ошибок по уровням литературного языка. Языковые варианты нормы. Устная и письменная формы литературного языка

Культура речи в преподавательской деятельности и стилистическое многообразие русского языка. Виды ораторской речи, академическое красноречие и речь преподавателя ВШ. Этика речевого общения преподавателя, этикетные формулы речи. Языковые средства и их стилевое расслоение. Стилистическая окраска словоупотребления. Экспрессивные стили речи.

Функционально-смысловые типы речи и культура полемики. Повествовательный тип речевой культуры. Описательный тип речевой культуры. Рассуждение как тип исследовательской речи. Культура речевой полемики и дискутивно-полемической речи.

Структура речи и текста. Композиция речей и композиция текстов. Способы построения научного текста и его архитектоника. Логическая организация материала. Аргументированность материала. Виды научных произведений. Подготовка рецензии / отзыва / аннотации на произведение из специализированной литературы.

Подготовка речи и выступление. Приемы изложение и объяснения содержания речи. Монолог и диалог в речи преподавателя. Контакт с аудиторией. Техника речи. Подготовка доклада по теме диссертации.

Культура научной и профессиональной речи. Языковые черты научной и профессиональной речи. Термин и терминологическая система языка. Стилевые и жанровые особенности научного стиля. Подготовка введения к диссертации.

Общая трудоемкость освоения дисциплины составляет 2 зачетные единицы, 72 ч.

по дисциплине «Экология (химия)»

направление 04.06.01 Химические науки профиль «Экология (химия)».

Дисциплина «Экология (химия)» относится к вариативной части блока Б1 Дисциплины (модули) подготовки студентов по направлению подготовки 04.06.01 Химические науки

Дисциплина нацелена на формирование компетенций: УК-1; ОПК-1; ПК-1

Целью освоения дисциплины «Экология (химия)» является формирование у будущих выпускников теоретических знаний и практических навыков в области экологии, современных научных экологических концепциях и методах исследования в экологии.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента.

Тематический план дисциплины:

Основные понятия и общие вопросы экологии

Понятие об экологии

Экология - наука о взаимодействиях организмов между собой и с окружающей средой, включая совместное развитие человека, сообщества людей в целом и окружающей природной средой, изучающей биотические механизмы регуляции и стабилизации окружающей среды, механизмы, обеспечивающие устойчивость жизни. Характерные состояния системы "человек-среда обитания". Основы физиологии труда и комфортные условия жизнедеятельности в техносфере. Критерии безопасности. Безопасность в чрезвычайных ситуациях.

Химические элементы в биосфере

Структура и основные типы биогеохимических циклов. Глобальные круговороты углерода, кислорода и воды. Круговороты азота, фосфора и серы. Круговороты радиоактивных элементов, ртути и других тяжелых металлов. Основные пути возврата веществ в круговорот. Превращения ациклических процессов в циклические - основа охраны природы и присущих ей круговоротов веществ.

Вещества-загрязнители (поллютанты, ксенобиотики) окружающей среды. Токсичность. Стандарты качества среды. Объем производства химических продуктов в современном мире (основные неорганические и органические продукты, удобрения, средства защиты растений борьбы с вредными насекомыми и пр., пластмассы, химические волокна, красители и родственные продукты и др.). Области применения (получение энергии, в сельском хозяйстве, в быту, транспорте и т.д.). Распространение в окружающей среде. Устойчивость и способность к разложению. Превращения поллютантов. Определение и задачи экотоксикологии (выявление степени и функции экосистем, а также разработка лечебных мероприятий). Оценка химических продуктов с помощью экотоксикологического профильного анализа.

Экологическая химия атмосферы

Общая характеристика и газовый состав атмосферы. Роль различных процессов в формировании химического состава атмосферы и температурного режима Земли. Массовые и другие загрязнители атмосферного воздуха (аэрозоли, диоксид серы, окислы азота, угарный газ и летучие углеводороды, включая бенз(а)пирен и другие канцерогенные, мутагенные и тератогенные соединения). Эмиссия (выделение) и иммисия (накопление) вредных веществ. Гигиенические критерии чистоты воздуха. Химико-технологические основы очистки газовых выбросов предприятий транспорта, химической промышленности, черной и цветной металлургии, тепловых электростанций.

Экологическая химия гидросферы

Характеристика и химический состав гидросферы. Состояние поверхностных и подземных вод. Потребность в воде (использование воды и водопотребление). Проблемы локального и глобального загрязнения воды. Стандарты качества воды. Химия и экология природных вод. Общие представления о гидрохимии и гидробиологии. Атропогенное эвтрофирование водоемов. Лигандный состав и формы существования ионов переходных металлов в природных водоемах. Внутриводоемный круговорот пероксида водорода и редокс-состояние водной среды. Роль

донных отложений в формировании качества водной среды. Процессы самоочищения водных экосистем. Виды загрязнений и каналы самоочищения водной среды. Физико-химические процессы на границе раздела фаз. Химическое и микробиологическое самоочищение. Биогенное инициирование радикальных процессов самоочищения. Свободные радикалы в природных водах. Моделирование поведения загрязняющих веществ в природных водах. Химико-биологические процессы в сточных водах. Характеристика сточных вод и виды загрязнений. Технология очистки сточных вод. Экохимические требования к очистке сточных вод. Особенности биохимической очистки сточных вод.

Эколого-химические проблемы суши (почвы, недра, ресурсы)

Общая характеристика, состав и функции литосферы. Почвенные ресурсы. Физико-химические основы почвенного плодородия. Почва, вода и живые организмы. Эрозия почв. Проблемы загрязнения почвенных экосистем. Загрязнение почв пестицидами и другими поллютантами. Проблема биоудобрений и биологических методов борьбы с вредителями лесных массивов и сельскохозяйственных культур. Утилизация и переработка твердых промышленных и бытовых отходов. Сжигание отходов. Технология складирования отходов. Методы вторичного использования отходов (сельскохозяйственные методы, компостирование мусора и ила очистных сооружений, пиролиз отходов и др.). Системы переработки отходов, совместимые с окружающей средой. Проблема качества продуктов питания. Генно-инженерные аспекты биобезопасности.

Теоретические основы решения проблем экологии и рационального природопользования

Радиоактивность как загрязняющий фактор

Радиационная угроза в современном мире. Военный ядерный комплекс. Атомная энергетика. Радиоактивные отходы и отработанное ядерное топливо. Расширение масштабов радиоактивного загрязнения на Земле. Опасность хронического облучения в малых дозах. Ввоз, хранение и переработка отработанного ядерного топлива - одна из важнейших проблем человечества на современном этапе.

Экология и энергетика

Термодинамические аспекты взаимодействия световой энергии с экосистемами и способы превращения энергии внутри системы. Соотношение между количеством и качеством энергии. Энергетические ресурсы и поиск новых источников энергии. Возобновляемые и невозобновляемые энергетические ресурсы. Биоэнергетика хемо-и фотосинтеза. Энергетические системы, основанные на прямом использовании солнечной энергии в фотохимических, фотоэлектрических и термоэлектрических процессах. Биогеохимические преобразователи энергии. Водородное топливо как источник энергии. Проблема получения энергии из биомассы.

Мониторинг состояния окружающей среды и методы анализа загрязняющих веществ Мониторинг как система наблюдения и контроля за состоянием окружающей среды. Уровни систем мониторинга: санитарно-токсикологический, экологический и биосферный. Основные методы и приборы контроля состояния атмосферы, гидросферы, литосферы и биоты. Характеристика экотоксикантов и методов их контроля. Биологическое действие и классы опасности веществ. Кумулятивный эффект. Чувствительность, точность и избирательность методов контроля. Классы приборов. Непрерывный и периодический контроль. Область применения и перспективы развития химических, биохимических, хроматографических, спектроскопических, масс-спектрометрических, электрохимических методов мониторинга.

Оценка воздействия на окружающую среду и экологическая экспертиза Организация и развития деятельности по управлению воздействием на окружающую среду в Российской Федерации; организация работ при проведении государственной и общественной экологической экспертизы; анализ расчетов загрязнения приземного слоя атмосферного воздуха, водоемов, размеров санитарно-защитных зон. Анализ источников загрязнения атмосферы, почвы и водных объектов, определение приоритетных загрязняющих веществ и источников загрязнения.

Промышленная экология и техника защиты окружающей среды Иерархическая организация производственных процессов, общие закономерности производственных процессов. Экологическая политика развития производства: комплексное использование сырьевых и энергетических ресурсов, создание замкнутых производственных

циклов, комбинирование и кооперация производств. Аппаратура, технологические схемы и установки очистки отходящих газов от вредных и ценных компонентов. Технологические схемы и установки очистки сточных вод от содержащихся в них поллютантов механическими, химическими, физико-химическими, биохимическими и др. методами. Технология и оборудование рекуперации твердых промышленных и бытовых отходов.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часа.

по дисциплине «Основы экологической химии»

направление 04.06.01 Химические науки профиль «Экология (химия)».

Дисциплина «Экология (химия)» относится к базовой части блока Б1 Дисциплины (модули) подготовки студентов по направлению подготовки 04.06.01 Химические науки

Дисциплина нацелена на формирование компетенций: УК-1; ОПК-1; ПК-1

Целью освоения дисциплины «Основы экологической химии» является формирование у будущих выпускников теоретических знаний и практических навыков и усвоение основных понятий об экологической химии — науке об общих химических процессах и взаимодействиях в окружающей среде (экосфере).

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента.

Тематический план дисциплины:

Физико-химические процессы в атмосфере и гидросфере

Состав атмосферы. Источники загрязнения атмосферы. Классификация, источники загрязнения атмосферы воздуха, водных объектов. Основные контролируемые параметры и нормирование загрязнения окружающей природной среды.

Основные процессы переноса и химического превращения загрязняющих веществ в атмосфере. Химические процессы в атмосфере воздуха.

Смоги. Озоновый защитный слой. «Парниковый эффект». Понятие явлений «озоновые дыры» и «кислотные дожди». Основной химизм данных процессов. Радиоактивное загрязнение атмосферы.

Химические процессы в гидросфере. Антропогенное воздействие на гидросферу. Источники загрязнения водной экосистемы.

Химия пресных поверхностных вод. Антропогенное эвтрофирование водоемов. Основной химизм данного процесса. Химические превращения в водной среде: гидролиз, фотолиз, окисление. Сточные воды как источник загрязнения водоёмов. Химико-биологические процессы в сточных водах.

Экологическая химия литосферы

Проблемы загрязнения почвенных экосистем. Источники загрязнения. Загрязнение почв ионами тяжёлых металлов, пестицидами и другими поллютантами. Перенос и распространение загрязняющих веществ в почве.

Формы миграции ионов тяжёлых металлов в почвах. Типы и функции биогеохимических барьеров. Процессы поступления тяжёлых металлов в древесные насаждения на урбанизированной территории.

Особенности распространения, трансформации и накопления загрязняющих веществ в окружающей среде

Изменения веществ в окружающей среде. Химические превращения в атмосфере воздуха, связанные с понятием «встречного синтеза». Свободнорадикальные процессы в атмосфере воздуха. Процессы фотолиза загрязняющих веществ в атмосфере воздуха. Возможные химические превращения ЗВ с радикальными частицами различной природы в атмосфере воздуха. Опасность данных превращений.

Геохимические барьеры. Процессы массопереноса загрязняющих веществ в водных объектах. Роль донных отложений в формировании качества водной среды. Процессы самоочищения водных экосистем.

Круговороты макроэлементов.

Свободные радикалы в природных водах. Опасность для ОПС и человека. Процессы химического окисления ионов тяжёлых металлов и нефтепродуктов в водных объектах.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единиц, 144 часа.

по дисциплине «Факториальная экология»

направление 04.06.01 Химические науки профиль «Экология (химия)»

Дисциплина «Факториальная экология» относится к вариативной части блока Б1 Дисциплины (модули) подготовки студентов по направлению подготовки 04.06.01 Химические науки.

Дисциплина нацелена на формирование компетенций: ПК-1; ПК-2.

Целью освоения дисциплины «Факториальная экология» является усвоение обучающимися основных понятий о факториальной экологии, исследование влияния абиотических факторов на живые организмы в природных и лабораторных условиях с целью установления пределов толерантности и оценки устойчивости организмов к внешним воздействиям.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося, зачет.

Тематический план дисциплины:

Раздел 1. Предмет, структура и методы факториальной экологии.

Раздел 2. Адаптации организмов к абиотическим факторам среды.

Раздел 3. Организация взаимодействий в группах живых организмов.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единиц, 144 часа.

часа.

по дисциплине «Основные методы очистки и утилизации технологических растворов и жилкостей»

направление 04.06.01 Химические науки профиль «Экология (химия)»

Дисциплина «Основные методы очистки и утилизации технологических растворов и жидкостей» относится к вариативной части блока Б1 Дисциплины (модули) подготовки студентов по направлению подготовки 04.06.01 Химические науки.

Дисциплина нацелена на формирование компетенций: ПК-1; ПК-2.

Целью освоения дисциплины «Основные методы очистки и утилизации технологических растворов и жидкостей» является усвоение обучающимися основных методов очистки и утилизации технологических растворов и жидкостей, являющихся промышленными отходами, изучение устройства и принципов работы аппаратов, предназначенных для очистки химически загрязненных сточных вод.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося.

Тематический план дисциплины:

Раздел 1. Виды и способы очистки промышленных сточных вод

Виды очистки промышленных сточных вод – механическая, химическая и биологическая очистка.

Способы очистки промышленных сточных вод – способ флотации; сорбционный и осадительный способы очистки.

Раздел 2. Утилизация продуктов очистки промышленных стоков

Виды и способы утилизации тяжелых металлов из сточных вод гальванического производства.

Виды и способы утилизации нефтепродуктов из промышленных сточных вод и отработанных смазочно-охлаждающих жидкостей.

Раздел 3. Влияние загрязняющих веществ промышленных стоков на окружающую природную среду

Физико-химическое и биологическое воздействие загрязняющих веществ промышленных стоков на водную экосистему.

Влияние загрязняющих веществ промышленных стоков на почвенную экосистему.

Раздел 4. Методы контроля и нормирование загрязняющих веществ в объектах окружающей природной среды

Методы контроля загрязняющих веществ в воздухе, воде и почве.

Нормативы поступления и содержания загрязняющих веществ в воздухе, воде и почве. Способы расчета нормативных показателей, их согласование и утверждение в природоохранных структурах

Общая трудоемкость освоения дисциплины составляет 4 зачетных единиц, 144 часа.

по дисциплине «Экологический мониторинг объектов окружающей среды» направление 04.06.01 Химические науки профиль «Экология (химия)»

Дисциплина «Экологический мониторинг объектов окружающей среды» относится к вариативной части блока Б1 Дисциплины (модули) подготовки студентов по направлению подготовки 04.06.01 Химические науки.

Дисциплина нацелена на формирование компетенций: ПК-1; ПК-2.

Целью освоения дисциплины «Экологический мониторинг объектов окружающей среды» является усвоение обучающимися основных понятий об экологическом мониторинге объектов окружающей среды, как системе наблюдения и контроля состояния окружающей среды.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося, зачет..

Тематический план дисциплины:

- Раздел 1. Экологический мониторинг загрязняющих веществ в атмосфере.
- Раздел 2. Экологический мониторинг загрязняющих веществ в водных объектах.
- Раздел 3. Экологический мониторинг загрязняющих веществ в почве.
- **Раздел 4.** Основные контролируемые параметры, методы контроля и нормирование загрязнения окружающей природной среды.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единиц, 144 часа.

по дисциплине «Теория решения изобретательских задач»

направление 04.06.01 «Химические науки» профиля «Экология (химия)».

Дисциплина «Теория решения изобретательских задач» относится к вариативной части блока ФТД.В Факультативы подготовки обучающихся по направлению подготовки 04.06.01 «Химические науки» профиля «Экология (химия)».

Дисциплина нацелена на формирование компетенций: УК-5, ПК-1.

Целью освоения дисциплины «Теория решения изобретательских задач» является формирование у аспирантов профессиональных компетенций, связанных с комплексным пониманием эволюции системы в связи с другими системами на макро и микроуровне, определением возможностей по дальнейшему развитию системы, составлению алгоритма решения научно-исследовательских задач с применением современных научных методологий, профессиональных знаний, информационно-коммуникационных технологий.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося, зачет.

Тематический план дисциплины:

Теория развития творческой личности

Структура жизненной стратегии творческой личности

Критерии достойной цели

Схема идеальной творческой стратегии

«Дебют». Главный конфликт этапа. Обстоятельства и ходы

«Миттельшпиль». Главный конфликт этапа. Обстоятельства и ходы

«Эндшпиль». Главный конфликт этапа. Обстоятельства и ходы

«Постэндшпиль». Главный конфликт этапа. Обстоятельства и ходы

Приемы разрешения технических противоречий

Отраслевой и межотраслевой опыт. Понятие передовой области техники

Опыт изобретателей и его использование

Бионика. Поиск аналогий и их накопление в обобщенной форме

Типовые приемы разрешения противоречий – разрешение противоречий во времени

Типовые приемы разрешения противоречий – разрешение противоречий в пространстве

Типовые приемы разрешения противоречий – разрешение противоречий за счет изменения структуры внутри системы

Типовые приемы разрешения противоречий – разрешение противоречий за счет использования возможностей надсистемы

Общая трудоемкость освоения дисциплины составляет 1 зачетную единицу, 36 часов.

по дисциплине «Инновационная деятельность вуза»

направление 04.06.01 «Химические науки» профиля «Экология (химия)».

Дисциплина «Инновационная деятельность вуза» относится к вариативной части блока ФТД.В Факультативы подготовки обучающихся по направлению подготовки 04.06.01 «Химические науки» профиля «Экология (химия)».

Дисциплина нацелена на формирование компетенций: УК-5, ПК-1.

Целью освоения дисциплины «Инновационная деятельность вуза» является формирование у аспирантов профессиональных компетенций, связанных со способностью планировать и решать задачи собственного профессионального и личностного развития, способностью самостоятельно проводить научные исследования и получать научные результаты в профессиональной деятельности.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося, зачет.

Тематический план дисциплины:

Организация инновационной деятельности вуза

Жизненный цикл инновации

Задачи и направления формирования инновационной инфраструктуры вуза

Особенности деятельности малых инновационных предприятий

Организация инновационной деятельности аспирантов, молодых ученых

Анализ инвестиционной привлекательности региона

Особенности инновационной деятельности в университетах США

Особенности законодательства США в области трансфера технологий и его влияние на управление интеллектуальной собственностью в университетах

Взаимодействие и совместная работа компании Google Inc. с университетами и промышленным сектором

Опыт поддержки стартапов компаний в бизнес-инкубаторе Plug & Play Tech Center

Поддержка инноваций студентов, аспирантов, молодых ученых в университетах США

Общая трудоемкость освоения дисциплины составляет 1 зачетную единицу, 36 часов.

государственной итоговой аттестации (ГИА)

направление 04.06.01 Химические науки

профиль Экология (химия).

Государственная итоговая аттестация (ГИА) относится к базовой части блока Б4 Дисциплины (модули) подготовки обучающихся по направлению подготовки 04.06.01 «Химические науки» профиль «Экология (химия)».

Дисциплина нацелена на формирование компетенций: УК-1, УК-2, УК-3, УК-4, УК-5, ОПК-1, ОПК-2, ОПК-3, ПК-,1 ПК-2.

Целью государственной итоговой аттестации (ГИА) является определение соответствия результатов освоения обучающимися основных образовательных программ подготовки научно-педагогических кадров в аспирантуре соответствующим требованиям федерального государственного образовательного стандарта (ФГОС ВО).

Цель «Подготовки к сдаче и сдача государственного экзамена» состоит в демонстрации знаний, умений и владений основными понятиями, методиками и технологиями в выбранной области и видах деятельности, определенных ОПОП.

ГИА завершается присвоением квалификации, указанной в перечне специальностей и направлений подготовки высшего образования

Аннотация рабочей программы государственной итоговой аттестации (ГИА) направление 04.06.01 Химические науки

профиль Экология (химия).

Государственная итоговая аттестация (ГИА) относится к базовой части блока Б4 Дисциплины (модули) подготовки обучающихся по направлению подготовки 04.06.01 «Химические науки» профиль «Экология (химия)».

Дисциплина нацелена на формирование компетенций: УК-1, УК-2, УК-3, УК-4, УК-5, ОПК-1, ОПК-2, ОПК-3, ПК-,1 ПК-2.

Целью государственной итоговой аттестации (ГИА) является определение соответствия результатов освоения обучающимися основных образовательных программ подготовки научно-педагогических кадров в аспирантуре соответствующим требованиям федерального государственного образовательного стандарта (ФГОС ВО).

Целью «Представление научного доклада об основных результатах подготовленной научно-квалификационной работы (диссертации)» является систематизация и закрепление теоретических знаний, практических умений и профессиональных навыков аспиранта в процессе их использования для решения конкретных исследовательских задач в рамках выбранной темы исследования.

ГИА завершается присвоением квалификации, указанной в перечне специальностей и направлений подготовки высшего образования